

Planning Geothermal Power Generation – Lessons learned

"Taller Regional " Panamá el 25 y 26 de mayo de 2010 Magnus Gehringer, especialista de energía del BM

Key Questions

- Huge potential for geothermal power generation in Central-America , 4,000 MW or more. Why have the countries only developed around 500 MW of geothermal power?
- If the development of geothermal power is as time- and capital consuming here as in other countries, could the CA countries learn from the experience of successful countries like Iceland, Kenya or Philippines?

Characteristics of Geothermal used for Power Generation

- Environmentally friendly / Option of carbon credits
- Limited and "reversible" impacts of power plants on nature and society
- Usually amongst the least cost options for power generation
- Indigenous resource, saves foreign currency
- Mature technology, high reliability
- Base load power (availability >90%)

Barriers to Geothermal Development

- High upfront costs for exploration and drillings; access to funding and guarantees
- 2. Legal & regulatory framework; Commercial risks, incentives, feed-in tariffs
- 3. Institutional and technical capacity
- 4. Information and data base on resources
- 5. Location of geothermal fields in protected or rural areas (grid connection costs)

Three geothermal countries No. 1: Kenya

- 40 m. people, 1.600 MWe installed, 170 MWe geothermal (11%)
- Residual (waste) heat and CO2 from fluids used for flower production
- Heavily dependent on hydro power (ca. 50%). Droughts!
- Rest is fossil fuels, mainly Diesel. High consumer tariffs, low consumption, fluctuating prices for 100% imported fuel
- GoK plans to diversify energy mix and focus on indigenous resources, mainly geothermal. Own drilling rigs, experts for geothermal exploration
- Extension of Olkaria field by 280 MW (4 x 70 MW)
- Other fields likely to provide several hundreds of MW's
- Capacity in 2015 likely to reach 500 MW

Kenya's geothermal build-up

- 1956: First interest and drillings
- 1972: First successful drilling at Olkaria, World Bank loans for surface exploration and exploratory drillings
- Extensive resource mapping
- Olkaria I 45 MW (1981-85), Olkaria II 70 MW (2003), Olkaria III 48 MW binary cycle, IPP, (2009)
- All power plants are within Hells Gate National Park Mitigation measures by KenGen to protect the park
- Sophisticated geothermal law and regulations allowing feed-in tariffs up to US\$ 8.5 cents per KWh

Geothermal in Kenya

Development of Power Generation from Geothermal in Kenya

• Data Source: KenGen / Mwangi, M. 2005

Kenya II

- KenGen, has up to now taken all development risks. Too weak to satisfy power demand
- Extensive study shows that geothermal power is Kenya's least cost option
- 2008: GoK decides to found GDC (Geothermal Development Company), a public company to develop geothermal fields, confirm the resource and then tender out fields to private sector (or transfer to KenGen to develop)
- In future, KenGen will develop its own projects and maybe some of GDC's projects. Other projects to private sector
- GDC resolves the issue of investors' risk perception due to exploration and test drillings

Olkaria II in Kenya

Philippines

- Located on Pacific Ring of Fire, >80 million people, 16,000 MW installed, thereof 2,000 MW geothermal (13%). Over 7,000 islands
- Limited indigenous resources of fossil fuels (oil & gas) make country dependent on imports
- Coal, hydro and oil based power plants account for 69% of installed capacity
- Private power companies have received several "Service Contracts" for geothermal fields including building the power plants. Transmission connection by State

Installed capacity and gross power generation by fuel source

Philippines geothermal build-up

- 1967: Geothermal Law passed
- 1969: Steam from geothermal well at Tiwi drives a 2.5 kW turbo-generator
- 1979: Tiwi (110 MW) commissioned
- 1983-84: Leyte and S.-Negros, both 112 MW
- Until 1990 other public projects up to 1,000 MW
- Next step 1993 to 1998 added 1,000 MW
- Full privatization of power sector in 1998
- Since then 49 MW

Philippines privatize GPP's and establish new legal and regulatory framework

Development of Power Generation from Geothermal in Philippines Before and After Privatization

Data source: doe.gov.ph

Existing and planned geothermal power generation

Taller Regional Panamá May 25, 2010 Magnus Gehringer

Incentives by Philippines' RE Act of 2008

- Subsidies for R&D
- Rural electrification cash incentive
- Fiscal incentives (VAT zero-rating, income tax holidays, tariff exemptions etc.), Financial Assistance Program
- Renewable Portfolio Standards
- Priority dispatch of RE, including geothermal
- Tax rebate and duty free import
- Zero % VAT on sale of power from RE
- Royalties 1.5% of gross income for geothermal Corporate tax rate fixed to 10% after the 7 years tax holiday period

Source: DoE, 2009

Gaps, Challenges and GoP Initiatives to Promote Geothermal

- Lack of awareness and interest in investment opportunities → DOE's aggressive investment promotion campaigns. Public awareness campaigns
- Environment and socio-cultural concerns → Harmonize regulations on protected areas and ancestral lands
- **Technological constraints** (acidic fluids etc.)
- Lack of investment in non-power applications → multi-crop dryer projects (fruit & produce), promoting hot spring areas for possible spa resort development for Tourism and Health Care

Source: DoE Portal, doe.gov.ph

And finally....

Iceland

- 5 major geothermal power plants, total installed capacity 570 MW. Plants from 70's are 60 to 80 MW, newer plants 100 to 215 (max. 400) MW
- A "Kalina" binary power plant (2 MWe) in rural area on 124°C with18 km pipiline to wells
- Geothermal provides 25% of the total installed capacity of 2,500 MW, the rest is hydro power
- Geothermal provides heating and hot water to 90% of all buildings and industries

Electricity Generation from Geothermal Source: NEA.is

Fig. 9. Generation of electricity using geothermal energy 1969–2009.

Iceland

- In 1960, Iceland decided to develop geothermal for heating and power generation, but project companies and banks could not take the risk of failures in exploration and drillings
- The Gol implemented "The National Energy Fund", which insured drillings with a 80% refund
- Many failures and GoI had to replenish the fund often
- Later, with more experience and fewer failures, the fund could also support exploratory activities
- The NEF is the key to Iceland's success in geothermal

Key Answers: What can be learned from others?

- Developing geothermal is not fast and easy. Important to get funding for the first project phases
- When a geothermal resource is confirmed and proven, projects risks decrease
- Then, geothermal power plant projects should be bankable for both public and private sector: risk level / proven technology /pay-back time
- At least 5 options that can sometimes be combined.....

Summary of the options

- 1. Risks mostly assumed by Government; a **public fund** mitigates the exploration and drilling risk of all geothermal drillings, thereby leaving project developers with only a minimal risk
- Steam field development is done by a separate GDC. Fields then tendered out to private or public sector for further development
- **3. Build up capacity** in exploration and drilling (KenGen now finances new projects through its government and several development banks and bilateral donors)

More options

- 4. Public development and assuming all risks, involve the **private sector as EPC contractor**, delivering turnkey equipment tobe publically owned and operated
- 5. Focus on letting the **private sector** do the job from exploration to operation. This implies that the country should offer a convincing package of incentives and subsidies, even refunding R&D costs, in order to attract private sector investors
- Whatever combination is chosen, an important factor for success is the **determination** of the Government!

Questions?

mgehringer@worldbank.org

THANK YOU FOR YOUR ATTENTION

Taller Regional Panamá May 25, 2010 Magnus Gehringer